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Abstract: The aim of this study was to investigate on an industrial scale the potential of multispectral 

imaging (MSI) in the assessment of the quality of different poultry products. Therefore, samples of 

chicken breast fillets, thigh fillets, marinated souvlaki and burger were subjected to MSI analysis 

during production together with microbiological analysis for the enumeration of Total Viable 

Counts (TVC) and Pseudomonas spp. Partial Least Squares Regression (PLS-R) models were 

developed based on the spectral data acquired to predict the “time from slaughter” parameter for 

each product type. Results showed that PLS-R models could predict effectively the time from 

slaughter in all products, while the food matrix and variations within and between batches were 

identified as significant factors affecting the performance of the models. The chicken thigh model 

showed the lowest RMSE value (0.160) and an acceptable correlation coefficient (r = 0.859), followed 

by the chicken burger model where RMSE and r values were 0.285 and 0.778, respectively. 

Additionally, for the chicken breast fillet model the calculated r and RMSE values were 0.886 and 

0.383 respectively, whereas for chicken marinated souvlaki, the respective values were 0.934 and 

0.348. Further improvement of the provided models is recommended in order to develop efficient 

models estimating time from slaughter.  

Keywords: poultry products; at-line measurements; multispectral imaging; multivariate data 

analysis 

 

1. Introduction 

In the last decade, meat consumption has rapidly increased while demand for high-quality meat 

is expected to continue augmenting as the world population rises. Chicken meat products account 

for 37% of global meat production due to their low-fat content, affordable price and exclusion of beef 

and/or pork meat for religious purposes [1]. However, raw poultry products are susceptible to 

deterioration (short shelf life) and to unpleasant organoleptic attributes during spoilage [2,3]. These 

facts in tandem with consumers’ demand for fresh meat has led to the development of alternative 

approaches, such as Process Analytical Technology (PAT), that are considered efficient in predicting 

quality and freshness in meat products during production [4,5]. 
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PAT is a promising approach for the assessment of products’ quality and it is currently 

implemented not only in the pharmaceutical industry [6] but also in the food industry [7,8]. The main 

concept of PAT is the combination of multivariate data derived through real-time (in-, on-, at- line) 

analytical methods to multivariate data analysis for continuous feedback and information build-up 

[9]. As analytical techniques of PAT are considered among others spectroscopic methods such as 

vibrational spectroscopy (FT-IR, NIR, Raman) [10–12], hyperspectral and multispectral imaging [13–

15] and biomimetic sensors (e-nose, e-tongue) [16,17]. Moreover, this innovative approach coupled 

to microbiological analysis, quality factors and machine learning tools, can permit the understanding 

of the process, the identification of Critical Control Points (CCPs) and finally the application of a 

knowledge base to control the process [18–20]. 

According to PAT approach, a potential analysis and sensor have to be able to estimate 

successfully and rapidly the critical control parameter of interest without the destruction of the 

product [7]. These requirements are fulfilled in the case of multispectral imaging [21] that combines 

an optical technique (visible and NIR region) to computer vision in an attempt to obtain spectral and 

spatial data for the metabolites on the surface of the examined sample. The main advantage over 

hyperspectral analysis is the fast image acquisition and the usage of simple algorithms for image 

processing (ROI region) and decision-making [13,22]. 

In recent years, many researchers have recommended this nondestructive method and several 

machine learning algorithms for the rapid assessment of meat quality [4,23,24]. Specifically, for 

poultry products qualitative models were constructed for the classification of intact chicken breast 

fillets based on three quality grades using hyperspectral analysis [25]. Quantitative and/or qualitative 

models in the region of visible and near-infrared (400–1700 nm), were able to detect the bacterial 

population (TVC, Pseudomonas spp. and Enterobacteriaceae) during spoilage of chicken meat [26–29]. 

Other studies involving multispectral imaging were associated with the adulteration of minced beef 

with chicken meat [30], the presence of fecal contaminants in a poultry line [31–33], defects [33–35] 

and tumors on the surface of chicken breasts [36,37]. 

So far there are limited studies on the implementation of spectroscopic methods during 

processing at meat industries [38] and the majority is focused on the determination of fat and fatty 

acids in pork and chicken breast fillets with near-infrared sensors [39–42]. Hence, the aim of this 

research was to investigate the potential of multispectral imaging, applied in a poultry processing 

industry, to determine the time from slaughter of four different poultry products and develop PLS-

R models assessing the time from slaughter directly from spectral data.  

2. Materials and Methods 

2.1. Experimental Design 

Multispectral Imaging (MSI) was performed at-line in a Greek poultry industry on four different 

poultry products: a) chicken breast fillets (n = 104, batches = 5), b) chicken thigh fillets (n = 97, batches 

= 5), c) chicken burger (n = 131, batches = 3), and d) marinated chicken souvlaki (n = 144, batches = 4). 

At regular intervals, samples from each batch were analyzed microbiologically for the enumeration 

of Total Viable Counts (TVC) and Pseudomonas spp. in parallel with MSI spectral data acquisition. In 

addition, samples from each product were stored at 4 °C for 216 h (9 days), since this time period is 

defined by the industry as the shelf-life of the product. In parallel to the spectral acquisition, the 

microbiological analysis was performed simultaneously with the other batches. 

Sample origins were extensive farming facilities where animals (Gallus domesticus: Ross strain) 

were fed from the company with a customized diet. Feeding consisted of grain, wheat, maize, soya 

bean oil and meat and premix for broilers (vitamin and mineral supplement). Chickens were 

slaughtered after 3 months of age and production was conducted according to the regulations of the 

EU 823/2004, 824/2004, 834/2004 and 543/2008.  
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2.2. Microbiological Analysis 

From each sample, 10 g was added aseptically to 90 mL of sterile quarter strength Ringer’s 

solution (Lab M Limited, Lancashire, United Kingdom) in a stomacher bag (Seward Medical, London, 

UK) and homogenized in a stomacher device (Lab Blender 400, Seward Medical, London, UK) for 60 

s at room temperature. For the enumeration of Total Viable Counts (TVC) and the dominant spoilage 

microorganism Pseudomonas spp., serial decimal dilutions were prepared in the same diluent and 

spread on the following media: a) tryptic glucose yeast agar (Plate Count Agar, Biolife, Milan, Italy) 

for TVC incubated at 25 °C for 72 h, and b) Pseudomonas Agar Base with selective supplement 

cephalothin-fucidin-cetrimide (LabM Limited, Lancashire, UK) for Pseudomonas spp., incubated at 25 

°C for 48 h. After incubation, colonies were enumerated and microbial counts were logarithmically 

transformed (log CFU/g). Poultry samples with TVC counts exceeding 7.0 log CFU/g were considered 

spoiled as reported elsewhere [43–45].  

2.3. Spectra Acquisition 

MSI analysis was performed using a Videometer-Lab instrument (Videometer A/S, Videometer, 

2019, Herlev, Denmark) which was installed in close proximity to the production line (at-line 

measurement) with the possibility of sample conditioning [46]. Videometer-Lab captures surface 

reflectance of samples in 18 different wavelengths (405–970 nm), namely: 405, 435, 450, 470, 505, 525, 

570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940 and 970 nm. Surface reflectance is recorded by a 

standard monochrome charged coupled device chip (CCD). The object of interest is placed at the 

center of an Ulbricht sphere, which has a matte white coating inside and light-emitting diodes (LEDs) 

with narrow-band spectral radiation positioned side by side at spheres rim. The purpose of the 

coating is to ensure a diffused and spatially homogenous reflectance of the sample. During 

instrument performance, the diodes are turned on successively leading to a monochrome image with 

32-bit floating-point accuracy for each wavelength. The final outcome of MSI analysis is a data cube 

of spatial and spectral data for each sample of size m × n × 18 (where m × n is the image size in pixels) 

[47,48]. 

A critical point before MSI application is the assurance that the range of LEDs intensity is stable 

while phenomena such as shadows and object’s disfiguration are avoided [23,49]. Therefore, a light 

set up procedure in which the acquisition captured at zero time of the experiment (auto light) is 

recalled and light-emitting diodes (LEDs) intensities are stabilized. Subsequently, geometric and 

radiometric calibration is undertaken in the Region of Interest (ROI) area with the aim of prototype 

target.  

In order to exclude non-informative areas such as petri dish surface, fat, connective tissue etc., a 

pre-process step is required. The segmentation of ROI on the sample from no relevant areas and the 

implementation of Canonical Discriminant Analysis (CDA) areas is conducted via Videometer-Lab 

version 2.12.39 (Videometer A/S, Herlev, Denmark). Also known as Fisher (Fisher’s discriminant 

analysis), CDA separates pixels to different classes, based on ROI, through the following Equation 

(1) [50,51]: 

R (a) = 
aT ∑ as

aT ∑ aN
 (1) 

where Σs is the distribution between classes and ΣN is the distribution within a class. 

2.4. Data Pre-Processing and Model Development 

For the development of models estimating the time from slaughter, Partial Least Squares 

Regression (PLS-R) [52,53] was chosen, where spectral data were the independent variables (n = 36) 

and time from slaughter (ts) was the dependent variable. Time from slaughter is considered as the 

time elapsed from slaughter until the MSI measurement. For each poultry model, a two-stage model 

development approach was followed: (a) calibration and full cross-validation (using leave one out 

cross-validation) for model optimization and (b) external validation with samples from different 

batches. More specifically, for chicken breast fillets, calibration was performed using a dataset from 
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three independent batches (n = 82) and external validation was undertaken with two other batches (n 

= 22). Similarly, the PLS-R model for chicken thigh fillets was constructed using a training dataset 

from three batches (n = 67), whereas two other batches (n = 30) were used to assess the prediction 

performance of the model. Concerning the chicken burger, two batches (n = 87) were used in model 

training and one batch (n = 44) in prediction. Finally, for marinated chicken souvlaki, the dataset 

consisted of two batches (n = 91) for training and two different batches (n = 43) for external validation.  

Prior to analysis, spectral data for each type of poultry product were pre-processed by different 

transformation techniques in an attempt to reduce random or systematic variations [22,54]. Reducing 

the total volume of data results in effective multispectral imaging systems and image acquisition with 

relatively low spatial resolutions in a few important wavelengths [13]. Standard Normal Variate 

transformation (SNV) Equation (2) was applied in the case of chicken thigh and burger in order to 

avoid collinear and “noisy” data areas [55]. In contrast, spectral data from chicken breast and 

marinated souvlaki were pre-processed with baseline offset treatment [56,57] Equation (3). Regarding 

time from slaughter (y variable), a logarithmic transformation was considered necessary due to large 

differences in the intensities of the raw data [58]. Data pre-treatment, model development and 

validation were implemented using the Unscrambler©  v.9.7 software (CAMO Software AS, Oslo, 

Norway). 

sI
SNV =

SI − mean(S)

stdev(S)
 (2) 

where S refers to pixel-wise spectra, Si is the “old” information contained in a specific wavelength 

and SiSNV is the “new-transformed” information contained in a specific wavelength [22].  

S(x) = x − min (x) (3) 

where S denotes pixel-wise spectra for one sample, x is information contained at a specific 

wavelength, and min(x) is the minimum variable in the x dataset. 

3. Results 

3.1. Microbiological Analysis 

Τhe range of the microbial population of TVC and Pseudomonas spp. for the different batches of 

poultry products and storage time is illustrated in Figure 1. Additionally, the spread of TVC counts 

for fresh and spoiled samples is provided for each product case. More specifically, for chicken breast 

fillets, the initial number of TVC and Pseudomonas spp. was 5.2 (±0.6) and 4.9 (±0.82) log CFU/g 

respectively, whereas in spoiled samples the respective values were 8.4 (±0.46) and 8.3 (±0.47) log 

CFU/g. Additionally, for chicken thigh fillets, samples were considered fresh with TVC and 

Pseudomonas spp. counts at 5 (±0.83) and 4.5 (±0.98) log CFU/g. Spoiled chicken thigh samples had 

TVC and Pseudomonas spp. values at 7.9 (±0.50) and 7.8 (±0.49) log CFU/g, respectively.  

For chicken burger samples, TVC and Pseudomonas spp. counts in fresh samples were 5.5 (±0.36) 

and 4.8 (±0.75) log CFU/g, respectively, while in spoiled samples the respective counts were 10.7 (±1.9) 

and 7.8 (±0.25) log CFU/g. Finally, marinated chicken souvlaki fresh samples had TVC and 

Pseudomonas spp. counts at 4.6 (±0.50) and 3.6 (±0.71) log CFU/g, respectively. In contrast, TVC and 

Pseudomonas spp. values for spoiled samples were 7.9 (±0.95) and 7.5 (±1.00) log CFU/g, respectively. 

Results from storage experiments at 4 °C showed that chicken breast fillets were determined as 

spoiled beyond 168 h of storage (TVC > 7 log CFU/g) with TVC value at 7.76 log CFU/g and 

Pseudomonas spp. counts at 7.6 log CFU/g. For chicken thigh fillets, samples were characterized as 

fresh until 120 h when TVC and Pseudomonas spp. counts were 7.5 log CFU/g and 7.5 log CFU/g, 

respectively. TVC and Pseudomonas spp. counts were 8.8 log CFU/g and 7.7 log CFU/g in spoiled 

chicken burger samples (storage time 216 h). Moreover, chicken marinated souvlaki was defined as 

spoiled after 168 h of storage in which TVC were 7.3 log CFU/g and Pseudomonas spp. counts were 

6.8 log CFU/g. 



Microorganisms 2020, 8, 552 5 of 14 

 

  

  

Figure 1. Boxplots for microbial counts (log CFU/g) of TVC (1: blue,2: red) and Pseudomonas spp. (3: 

green,4: orange) in fresh (1: blue,3: green) and spoiled (2: red,4: orange) samples of each product. 

3.2. Spectral Measurements 

For the development of PLS-R models, each wavelength contributed differently to each category 

of poultry product, despite the fact that all these products have the same basic ingredient (i.e., poultry 

meat). This is demonstrated in Figure 2 where differences could be observed in the spectra between 

each type of product during storage at 4 °C, based mostly on their nutrition composition difference 

[59,60]. 

The same figure (Figure 2) confirms also the ability of this spectroscopic method to detect and/or 

separate spoiled from fresh samples for each of the four products. For instance, in the case of chicken 

breast, wavelengths with variations in reflectance for fresh and spoiled samples were located in the 

areas of 470–570 nm and 590–970 nm, respectively. Wavelength range from 660 to 970 nm seemed to 

affect the estimation of spoilage for chicken thigh. Similarly, for marinated chicken souvlaki 

wavelengths above 570 nm deviated between fresh and spoiled samples, whereas for the chicken 

burger 850–970 nm were noticed as different. 
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Figure 2. Spectra from MSI analysis (405–970 nm) for each poultry product at 24 h (blue line) and 216 

h (red line) of storage at 4 °C. 

3.3. PLS-R Model Performance 

RLS-R models assessing the time from slaughter showed satisfactory performance for each 

category of poultry product as inferred both graphically (Figure 3) and computationally based on 

performance indices such as slope, offset, correlation coefficient (r) and root mean squared error 

(RMSE) (Table 1). 

For chicken breast fillets, time from slaughter was estimated quite accurately despite the 

variations between batches, with rp and RMSEp values for the prediction dataset of 0.886 and 0.383, 

respectively. Differences between batches and ingredients (spices, herbs and sauce) used in 

marinated chicken souvlaki did not affect the prediction performance of the PLS-R model, with rp 

and RMSEp values of 0.934 and 0.348, respectively. Even though chicken thigh muscle has a more 

complex texture, with a higher percentage of fat and connective fat tissue [61,62], no differences were 

observed between batches and subsequently, external validation was performed satisfactorily with 

rp and RMSEp values of 0.859 and 0.160, respectively. Similarly, the presence of vegetables (peppers, 

onions and herbs) and spices in the homogeneous mixture of chicken burgers was not an obstacle for 

the external validation, where rp and RMSEp values were 0.778 and 0.285, respectively. The above-

mentioned RMSE values of prediction indicate satisfactory accuracy of the models used to assess the 

observed data [27,63]. 
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Figure 3. Comparison of observed (open symbols) and predicted (solid symbols) values of time from 

slaughter (log ts) after the development of the PLS-R model. Solid line depicts the line of equity (y = 

x) and dashed lines are ± 1.6 log ts (i.e., 48 h after slaughter). 

Table 1. Performance indices (slope, offset, r and RMSE) for PLS-R model development and validation 

for each poultry product. 

Poultry Product 
Stage of 

Modelling 

No of 

Samples 
Slope Offset 

r (Correlation 

Coefficient) 
RMSE 

Chicken Breast 

Calibration 82 0.933 0.138 0.966 0.076 

FCV 1 82 0.916 0.173 0.953 0.091 

Prediction 22 1.150 0.055 0.886 0.383 

Chicken Thigh 

Calibration 67 0.953 0.097 0.976 0.065 

FCV 67 0.933 0.136 0.957 0.088 

Prediction 30 0.854 0.243 0.859 0.160 

Chicken Burger 

Calibration 87 0.982 0.035 0.991 0.033 

FCV 87 0.968 0.063 0.987 0.040 

Prediction 44 0.513 1.172 0.778 0.285 

Chicken 

Marinated 

Souvlaki 

Calibration 91 0.962 0.073 0.981 0.067 

FCV 91 0.954 0.092 0.964 0.093 

Prediction 43 1.183 0.650 0.934 0.348 
1 FCV: Full cross-validation. 

The important wavelengths (mean values and standard deviations) reflecting the characteristics 

of spectral data for each poultry product were obtained based on the beta regression coefficients 

(Figures 4–7). 
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Figure 4. Spectral data (mean and standard deviation) influence (b coefficients) on PLS-R model 

construction for chicken breast samples. Dashed bars represent data that influenced more the model 

(1,19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25: 570 nm; 8, 

26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 850 nm; 14, 32: 870 nm; 

15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm). 

 

Figure 5. Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model 

construction for chicken thigh samples. Dashed bars represent data that influenced more the model 

(1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25: 570 nm; 8, 

26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 850 nm; 14, 32: 870 nm; 

15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm). 
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Figure 6. Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model 

construction for chicken burger samples. Dashed bars represent data that influenced more the model 

(1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25: 570 nm; 8, 

26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 850 nm; 14, 32: 870 nm; 

15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm). 

 

Figure 7. Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model 

construction for chicken marinated souvlaki samples. Dashed bars represent data that influenced 

more the model (1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 

7, 25: 570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 850 

nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm). 

Based on these beta regression coefficients, equations were constructed for the assessment of 

time from slaughter for each product (Equations 4–7). 

Yts,chicken breast = 2.016 + 0.063 Xmean,405 nm + 0.033 Xmean,435 nm – 0.042 Xmean,450 nm – 0.134 

Xmean,470 nm – 0.057 Xmean,505 nm + 0.103 Xmean,570 nm + 0.015 Xmean,630 nm + 0.027 Xmean,645 nm – 

0.081 Xmean,700 nm + 0.012 Xmean,870 nm + 0.023 Xmean,910 nm + 0.040 Xmean,940 nm + 0.039 Xmean, 970 

nm – 0.022 XSD,450 nm – 3.505 XSD,470 nm – 2.462 XSD,505 nm – 0.023 XSD,525 nm                                                                                                                 

(4) 

Yts,chicken thigh = −1.287 + 1.823 Xmean,405 nm + 1.596 Xmean, 435 nm – 2.277 Xmean, 470 nm – 1.835 

Xmean,505 nm + 0.774 Xmean,645 nm + 0.901 Xmean, 660 nm + 1.407 Xmean, 700 nm – 0.888 Xmean, 910 nm – 

0.754 XSD, 660 nm – 1.135 XSD, 700 nm 

(5) 
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Yts,chicken burger = 3.042 + 5.092 Xmean,405 nm – 2.948 Xmean,435 nm – 1.332 Xmean,450 nm – 2.205 

Xmean,525 nm + 10.153 Xmean,570 nm – 15.754 Xmean,590 nm+ 1.397 Xmean,630 nm + 4.716 Xmean,645 nm + 

1.982 Xmean,660 nm – 4.230 Xmean,700 nm + 2.344 Xmean,850 nm – 2.989 Xmean,890 nm + 2.237 Xmean,910 

nm- 3.283 XSD,405 nm +2.382 XSD,505 nm + 2.161 XSD,525 nm + 2.304 XSD,570 nm – 1.799 XSD,590 nm –

1.402 XSD,660 nm – 1.874 XSD,700 nm +1.558 XSD,850 nm + 1.112 XSD,870 nm –2.188 XSD,970 nm 

(6) 

Yts,chicken marinated souvlaki = 3.071 – 0.205 Xmean,405 nm + 0.180 Xmean,435 nm + 0.255 Xmean,450 nm – 

0.442 Xmean,630 nm + 0.189 Xmean,645 nm + 0.223 Xmean,660 nm – 0.168 Xmean,700 nm – 0.122 Xmean,850 

nm + 0.119 Xmean,870 nm + 0.196 Xmean,940 nm – 0.150 XSD,435 nm – 0.185 XSD,450 nm + 0.232 XSD,505 

nm + 0.184 XSD,525 nm – 0.319 XSD,590 nm + 0.091 XSD,645 nm + 0.131 XSD,870 nm – 0.165 XSD,910 nm – 

9.849 XSD,940 nm  

(7) 

4. Discussion 

Microbiological analysis demonstrated variations between batches for each category of poultry 

product even though the examined samples were obtained by the same farming conditions, slaughter 

process and production. For chicken breast and thigh samples, differences occurred at the initial 

microbial load (TVC and Pseudomonas spp.) based mostly on animal strain and fat content [62]. 

Furthermore, in the case of processed poultry products, the presence of additional ingredients such 

as vegetables and herbs seemed to influence the initial and final load of microorganisms. 

MSI acquisition showed variations in reflectance at many wavelengths between the four poultry 

products due to their differences in the food matrix (chicken breast and chicken thigh) and the 

supplementary ingredients used in the production process of different chicken products (i.e., burger 

and marinated souvlaki). Moreover, spectra figures for fresh and spoiled samples (Figure 2) provided 

by MSI application indicated reflectance differences at several wavelengths, which are firmly linked 

to biochemical alterations and metabolic compounds produced by the spoilage microbiota on the 

surface of meat and poultry products. More specifically, reflectance at 570–700 nm is related to 

respiratory pigments such as myoglobin (570 nm), oxymyoglobin (590 nm) and metmyoglobin (630 

nm) [23,24,59]. In the NIR region, absorption bands at 910 nm are linked to denaturation of proteins 

[60,64] while at 750 and 970 nm, O-H second overtones are related to the moisture content in the 

samples [26,38,53]. In addition, absorption bands observed in the NIR region (928 and 940 nm) are 

correlated to the presence of fatty acids and fat within the sample matrix [14,60,65]. 

PLS-R models predicted satisfactorily the time from slaughter for each poultry product (Table 

1) where the chicken thigh model showed the lowest value of RMSE followed by the chicken burger 

model. RMSE and r values of prediction were in the range of 0.160–0.348 and 0.778–0.943 respectively, 

for all PLS-R models. Model performance was gradually deteriorated from the calibration to the 

prediction stage. As illustrated in Figure 3, batches used in external validation differed from the 

calibration dataset in all products and especially in the case of the chicken breast. These findings 

indicate the importance of performing validation with independent datasets (batches at different time 

points) and to include as much variability as possible in the developed model [64,66,67]. Additionally, 

the developed model addressed for at-line implementation must be validated by an independent 

dataset in order to construct an accurate and robust model [24,52]. Despite this variation in batches, 

both calibration and prediction datasets in Figure 3 are situated within the limit area of ±1.6 log ts 

resulting in acceptable PLS-R models. For chicken marinated souvlaki and burger models, variations 

between batches and higher RMSE values could be explained due to different types of ingredients 

such as spices, chopped vegetables and marinade employed in the production process. 

Beta regression coefficients revealed the influence of each wavelength on the assessment of time 

from slaughter for each poultry product. According to Figures 4–7, wavelengths with high positive 

or negative values have an important contribution to the model and convey useful information. The 

comparison of these findings with the raw spectra shown in Figure 2 confirms the significant role of 

reflectance bands in the range 570–700 nm and 700–970 nm for the development of PLS-R models 

[38,68]. As mentioned above, absorption bands at NIR region of 910 nm seemed to be associated with 

proteins, which are in abundance in chicken meat, especially in chicken breast [61]. The influence of 
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muscle pigments and water content on the classification of chicken breast fillets was also highlighted 

by Yang et al., where samples were successfully classified in different quality grades [25]. 

In conclusion, the performance of the developed PLS-R models showed an efficient prediction 

of the time from slaughter (ts) for each poultry product. The food matrix (muscle type, spices and 

marinade) had a great impact on the prediction of time from slaughter with marinated chicken 

souvlaki and chicken thigh models showing satisfactory performance. The prediction was also 

influenced by the variations between batches. Furthermore, the selection of different datasets 

(batches) as external validation assures the efficient prediction of models. Additional measurements 

and continuous information feedback could ameliorate the existing models and result in a more 

successful prediction of time from slaughter. 
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